Q.P. Co	e: 18EC0403	
Reg.	o:	
M	DDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR	
	(AUTONOMOUS)	
	B. Tech II Year II Semester Supplementary Examinations July-2021	
	(Electrical and Electronics Engineering)	
Time: 3	burs Max. Marks: 60	
	PART-A	
	(Answer all the Questions $5 \times 2 = 10$ Marks)	
1	Define causal and non-causal systems.	2M
	What is the Relationship between exponential Fourier series and trigonometric 2 Fourier series coefficients?	2M
	What is the Relation between unit step and impulse response?	2M
	What are the Properties of ESD?	2M
	What is the Laplace Transform of Parabolic Function.?	2M
	PART-B	
	(Answer all Five Units 5 x $10 = 50$ Marks)	
	UNIT-I	
2	explain the classification of signals in both continuous time and discrete time with 10	0M
	OP	
3	Check whether the following system is	
	a) Static or dynamic (b) linear or non-linear 10	0M
	c) Causal or non- causal (d) Time invariant or time variant	
	$i)d^{3}y(t)/dt^{3}+2d^{2}y(t)/dt^{2}+4 dy(t)/dt+3y^{2}(t)=x(t+1)$	
	ii) $d^2y(t)/dt^2+2y(t) dy(t)/dt+3ty(t)=x(t)$	
	UNIT-II	
4	tate and Prove any Five Properties of the Fourier Series.	0M
	OR	
5	ind the Fourier series expansion of the half wave rectified sine wave shown in figure. 10^{-10}	0M
	×(t)	
	A	
	8 0- 3m da 5m da	
(UNIT-III	л. <i>т</i>
0	Derive the transfer function and impulse response of an LTL system	M M
	OR	IVI
7	ignal $x(t) = 2 \cos 400\pi t + 6 \cos 640\pi t$ is ideally sampled at fs= 500 Hz. If the 10	0M
	ampled signal is passed through an ideal LPF with a cut off frequency of 400Hz,	
	what frequency components will appear in the output? Find the output signal.	
	UNIT-IV	
8	State and prove the time convolution theorem with Fourier transforms. 5	M
	State and prove the Parseval's theorem for power signals 5	M
0	UK Show that R(r) and ESD form Fourier transform pair	M
2	State and prove the frequency convolution theorem with Fourier transforms 5	M
	prove and negacine, convolution theorem whill i outfor transforms	

Q.P. Code: 18EC0403

	UNIT-V	
10	a Find the inverse Z-transform of $X(z) = z^{-1}/(3-4z^{-1}+z^{-2})$, ROC: $ z > 1$	5M
	b Find the convolution of the sequences $x_1(n)=(1/2)^n u(n)$ and $(1/3)^{n-2}u(n)$	5M
	OR	

11 State and prove the any five Properties Laplace Transform

10M

END

 1000

(c) çussi ersişte araşısı (pd.) (ukir +345) (okir'ni diçipitir+39°(i)-xirit) (i)d⁵yil) bir 2500 diçipitir+39(i)-xirit)

11-13-00

10.01		

²⁹ Find the Fundôr-series expansion of the tott wave recitived size wave shown in figure.¹⁹ Find

111-11710

Signat $y(t) = 2 \cos 400m + 6 \cos 640m is ideally sampled at <math>ts = 500 \text{ Hz}$. If the 403 sampled signal is passed brough at ideal GP with a dat off. Buqueneys of 400Hz, whet frequency components will repeat in this corput Rad discharged signal.

Page **2** of **2**